资源类型

期刊论文 53

年份

2023 4

2022 5

2021 3

2020 8

2019 2

2018 3

2017 7

2016 1

2015 4

2014 2

2013 4

2012 1

2011 2

2010 2

2009 2

2007 2

2003 1

展开 ︾

关键词

CO2 加氢 1

K 助剂 1

Mn 助剂 1

n 型碳纳米管 1

乙烯 1

减排 1

化学循环 1

变形机制 1

同时去除 1

弱曝气 1

形变孪晶 1

形变诱导马氏体 1

最佳可行技术 1

污染防治 1

潜力 1

生物固锰除锰 1

电解锰 1

石脑油裂解 1

简缩流程 1

展开 ︾

检索范围:

排序: 展示方式:

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1255-8

摘要: • Mechanisms of redox reactions of Fe- and Mn-oxides were discussed. • Oxidative reactions of Mn- and Fe-oxides in complex systems were reviewed. • Reductive reaction of Fe(II)/iron oxides in complex systems was examined. • Future research on examining the redox reactivity in complex systems was suggested. Conspectus Redox reactions of Fe- and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments. Due to experimental and analytical challenges associated with complex environments, there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems, and most of the studies so far have only focused on simple model systems. To bridge the gap between simple model systems and complex environmental systems, it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation. In this Account, we primarily focused on (1) the oxidative reactivity of Mn- and Fe-oxides and (2) the reductive reactivity of Fe(II)/iron oxides in complex model systems toward contaminant degradation. The effects of common metal ions such as Mn2+ , Ca2+, Ni2+, Cr3+ and Cu2+, ligands such as small anionic ligands and natural organic matter (NOM), and second metal oxides such as Al, Si and Ti oxides on the redox reactivity of the systems are briefly summarized.

关键词: Iron oxides     manganese oxides     reduction     oxidation     complex systems     reaction kinetics and mechanisms    

Simultaneous enhanced ammonia and nitrate removal from secondary effluent in constructed wetlands using a new manganese-containing

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1807-4

摘要:

● MnO2/PCL composite material (MPCM) enhances ammonia and nitrate removal in CWs.

关键词: Constructed wetland     Nitrogen removal     Manganese redox     Polycaprolactone     Nitrous oxide    

Photoreduction adjusted surface oxygen vacancy of BiMoO for boosting photocatalytic redox performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1937-1948 doi: 10.1007/s11705-023-2353-5

摘要: In this study, Bi2MoO6 with adjustable rich oxygen vacancies was prepared by a novel and simple solvothermal-photoreduction method which might be suitable for a large-scale production. The experiment results show that Bi2MoO6 with rich oxygen vacancies is an excellent photocatalyst. The photocatalytic ability of BMO-10 is 0.3 and 3.5 times higher than that of the pristine Bi2MoO6 for Rhodamine B degradation and Cr(VI) reduction, respectively. The results display that the band energy of the samples with oxygen vacancies was narrowed and the light absorption was broadened. Meanwhile, the efficiency of photogenerated electron-holes was increased and the separation and transfer speed of photogenerated carriers were improved. Therefore, this work provides a convenient and efficient method to prepare potential adjustable oxygen vacancy based photocatalysts to eliminate the pollution of dyes and Cr(VI) in water.

关键词: Bi2MoO6     oxygen vacancies     photoreduction     Cr(VI)     RhB    

Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids

Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG,Jun MA

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 105-111 doi: 10.1007/s11783-014-0726-1

摘要: The aggregation of common manganese dioxide (MnO ) colloids has great impact on their surface reactivity and therefore on their fates as well as associated natural and synthetic contaminants in engineered (e.g. water treatment) and natural aquatic environments. Nevertheless, little is known about the aggregation kinetics of MnO colloids and the effect of humic acid (HA) and surfactants on these. In this study, the early stage aggregation kinetics of MnO nanoparticles in NaNO and Ca(NO ) solutions in the presence of HA and surfactants (i.e., sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVP)) were modeled through time-resolved dynamic light scattering. In the presence of HA, MnO colloids were significantly stabilized with a critical coagulation concentration (CCC) of ~300 mmol·L NaNO and 4 mmol·L Ca(NO ) . Electrophoretic mobility (EPM) measurements confirmed that steric hindrance may be primarily responsible for increasing colloidal stability in the presence of HA. Moreover, the molecular and/or chemical properties of HA might impact its stabilizing efficiency. In the case of PVP, only a slight increase of aggregation kinetics was observed, due to steric reactions originating from adsorbed layers of PVP on the MnO surface. Consequently, higher CCC values were obtained in the presence of PVP. However, there was a negligible reduction in MnO colloidal stability in the presence of 20 mg·L SDS.

关键词: humic acid     surfactant     aggregation kinetics     drinking water     manganese dioxide colloids    

Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 420-432 doi: 10.1007/s11705-021-2065-7

摘要: Production cost, capacitance, and electrode materials safety are the key factors to be concerned about for supercapacitors. In this work, a type of carbon nanosheets was produced through the carbonization of tripotassium citrate monohydrate and nitric acidification. Subsequently, a well-designed manganese dioxide/carbon nanosheets composite was synthesized through hydrothermal treating. The carbon nanosheets served as the substrate for growing the manganese dioxide, regulating its distribution, and preventing it from inhomogeneous dimensions and severe agglomeration. Many manganese dioxide nanosheets grew vertically on the numerous functional groups generated on the surface of the carbon nanosheets during acidification. The synergistic combination of carbon nanosheets and manganese dioxide tailors the electrochemical performance of the composite, which benefits from the excellent conductivity and stability of carbon nanosheets. The carbon nanosheets derived from tripotassium citrate monohydrate are conducive to the remarkable performance of manganese dioxide/carbon nanosheets electrode. Finally, an asymmetric supercapacitor with active carbon as the cathode and manganese dioxide/carbon nanosheets as the anode was assembled, achieving an outstanding energy density of 54.68 Wh·kg–1 and remarkable power density of 6399.2 W·kg–1 superior to conventional lead-acid batteries. After 10000 charge-discharge cycles, the device retained 75.3% of the initial capacitance, showing good cycle stability. Two assembled asymmetric supercapacitors in series charged for 3 min could power a yellow light emitting diode with an operating voltage of 2 V for 2 min. This study may provide valuable insights for applying carbon materials and manganese dioxide in the energy storage field.

关键词: carbon nanosheets     manganese dioxide     asymmetric supercapacitors     energy density     power density    

High butanol production by regulating carbon, redox and energy in Clostridia? ?

Jianfa Ou,Chao Ma,Ningning Xu,Yinming Du,Xiaoguang (Margaret) Liu

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 317-323 doi: 10.1007/s11705-015-1522-6

摘要: Butanol is a promising biofuel with high energy intensity and can be used as gasoline substitute. It can be produced as a sustainable energy by microorganisms (such as Clostridia) from low-value biomass. However, the low productivity, yield and selectivity in butanol fermentation are still big challenges due to the lack of an efficient butanol-producing host strain. In this article, we systematically review the host cell engineering of Clostridia, focusing on (1) various strategies to rebalance metabolic flux to achieve a high butanol production by regulating the metabolism of carbon, redox or energy, (2) the challenges in pathway manipulation, and (3) the application of proteomics technology to understand the intracellular metabolism. In addition, the process engineering is also briefly described. The objective of this review is to summarize the previous research achievements in the metabolic engineering of and provide guidance for future novel strain construction to effectively produce butanol.

关键词: Clostridia     butanol     biofuel     metabolism     carbon     redox     energy    

Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines

Rekha M., H. Kathyayini, N. Nagaraju

《化学科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 415-421 doi: 10.1007/s11705-013-1360-3

摘要: Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Brunner-Emmett-Teller-N adsorption-desorption for surface area, temperature programmed desorption of NH and -butyl amine back titration methods for surface acidity, powder X-ray diffraction for textural properties, and Fourier transform infrared spectroscopy for the anionic radicals. The catalytic activity has been determined under heterogeneous conditions in the condensation reaction between -phenylenediamine and benzil. The product purity is checked by thin-layer chromatography and melting point. The products are also analysed by LC-MS and H-NMR techniques. The yields of the products have been found to be good and catalysts exhibited excellent recyclability. The effect of changing the reaction parameters such as temperature, reaction time, amount of the catalyst, nature of solvent and molar ratio of reactants on the yield of the product has been studied. The surface acidity of the catalysts plays an important role in activating the reaction.

关键词: alumina     manganese oxide deposited on alumina     quinoxaline synthesis    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent

Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 902-912 doi: 10.1007/s11705-019-1887-z

摘要: High-manganese containing vanadium wastewater (HMVW) is commonly produced during the vanadium extraction process from vanadium titano-magnetite. HMVW cannot be reused and discharged directly, and is harmful to the environment and affect product quality due to heavy metals in the wastewater. The wastewater is usually treated by lime neutralization, but valuable metals (especially V and Mn) cannot be recovered. In this study, an efficient and environmentally friendly method was developed to recover valuable metals by using a solvent extraction-precipitation process. In the solvent extraction process, 98.15% of vanadium was recovered, and the V O product, with a purity of 98.60%, was obtained under optimal conditions. For the precipitation process, 91.05% of manganese was recovered as MnCO which meets the III grade standard of HG/T 2836-2011. Thermodynamic simulation analysis indicated that MnCO was selectively precipitated at pH 6.5 while Mg and Ca could hardly be precipitated. The results of X-ray diffraction and scanning electron microscopy demonstrated that the obtained V O and MnCO displayed a good degree of crystallinity. The treated wastewater can be returned for leaching, and resources (V and Mn) in the wastewater were utilized efficiently in an environmentally friendly way. Therefore, this study provides a novel method for the coextraction of V and Mn from HMVW.

关键词: high-manganese containing vanadium wastewater     solvent extraction     carbonate precipitation     vanadium titano-magnetite     valuable metal recovery    

The role of manganese oxides in the activation of peroxymonosulfate (PMS)

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1158-8

摘要: Manganese oxides (MnOx) have been demonstrated to be effective materials to activate Oxone (i.e., PMS) to degrade various contaminants. However, the contribution of direct oxidation by MnOx to the total contaminant degradation under acidic conditions was often neglected in the published work, which has resulted in different and even conflicting interpretations of the reaction mechanisms. Here, the role of MnOx (as both oxidants and catalysts) in the activation of Oxone was briefly discussed. The findings offered new insights into the reaction mechanisms in PMS-MnOx and provided a more accurate approach to examine contaminant degradation for water/wastewater treatment.

关键词: Peroxymonosulfate     Manganese oxides     Catalyst     Oxidant    

Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction

Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 790-797 doi: 10.1007/s11705-018-1706-y

摘要: A noble-metal-free catalyst based on both Mn O and MnO was prepared by using the dielectric barrier discharge technique at moderate temperature. The prepared catalyst shows a higher electrocatalytic activity towards the oxygen reduction reaction than the catalyst prepared by using the traditional calcination process. The enhanced activity could be due to the coexistence of manganese ions with different valences, the higher oxygen adsorption capacity, and the suppressed aggregation of the catalyst nanoparticles at moderate temperature. The present work would open a new way to prepare low-cost and noble-metal-free catalysts at moderate temperature for more efficient electrocatalysis.

关键词: oxygen reduction reaction     manganese oxides     mixed valences of manganese     oxygen adsorption     dielectric barrier discharge    

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 365-373 doi: 10.1007/s11708-017-0500-8

摘要: Lithium manganese oxide (LiMn O ) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn O . Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn O ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn O surface is the primary reason for reduced cell life in LiMn O batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn in this interface layer are not yet well understood. To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn O cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxidation products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electrolyte solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.

关键词: lithium manganese oxide batteries     reactive force field (ReaxFF)     cathode-electrolyte interface layer     molecular dynamics    

Occurance and control of manganese in a large scale water treatment plant

Youjun CHEN,Feng XIAO,Yongkang LIU,Dongsheng WANG,Ming YANG,Hua BAI,Jiong ZHANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 66-72 doi: 10.1007/s11783-014-0637-1

摘要: The continuous variations of dissolved oxygen (DO), manganese (Mn), pH, and their effect on manganese removal by different water treatment processes are investigated. The results show that the declined DO concentration and pH value in the bottom of reservoir results in the increasing release of Mn from sediment to source water. Manganese concentration increased from 0.1 to 0.4 mg·L under the condition that DO concentration decreased from 12.0 to 2.0 mg·L in raw water. The different water treatment processes exhibited different efficiency on manganese removal. The processes with recycling of the suspended sludge, low elevation velocity in settling tank and slow filter rate, will benefit the manganese removal. During a high release of manganese in raw water, traditional coagulation-sedimentation and filtration could not completely remove Mn, although granular activated carbon filtration (GAC) had been applied. At that case, preoxidation with chlorine or potassium permanganate (KMnO ) was necessary to address the high manganese concentration.

关键词: manganese release     dissolved oxygen     settling filtration     pre-oxidation    

Visible light induces bacteria to produce superoxide for manganese oxidation

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1619-y

摘要:

● Term of manganese-oxidizing microorganisms should be reconsidered.

关键词: Mn(II) oxidation     Manganese-oxidizing bacteria     Reactive oxygen species     Mn(III/IV) oxides    

Probing the redox process of

Rui Lu, Wei Chen, Wen-Wei Li, Guo-Ping Sheng, Lian-Jun Wang, Han-Qing Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0905-y

摘要: Fluorescece spectroelectrochemistry is used to probe redox process of benzoquinone. The benzoquinone reduction state has a lower fluorescence quantum efficiency. CVF and DCVF can reveal more information about benzoquinone redox reactions. This method can analyze compounds with fluorescence and electrochemical activities. Quinones are common organic compounds frequently used as model dissolved organic matters in water, and their redox properties are usually characterized by either electrochemical or spectroscopic methods separately. In this work, electrochemical methodology was combined with two fluorescence spectroelectrochemical techniques, cyclic volta- fluorescence spectrometry (CVF) and derivative cyclic volta- fluorescence spectrometry (DCVF), to determine the electrochemical properties of -benzoquinone in dimethyl sulfoxide, an aprotic solution. The CVF results show that the electrochemical reduction of -benzoquinone resulted in the formation of radical anion and dianion, which exhibited a lower fluorescence intensity and red-shift of the emission spectra compared to that of -benzoquinone. The fluorescence intensity was found to vary along with the electrochemical oxidation and reduction of -benzoquinone. The CVF and DCVF results were in good consistence. Thus, the combined method offers a powerful tool to investigate the electrochemical process of -benzoquinone and other natural organic compounds.

关键词: p-Benzoquinone     Electrochemistry     Fluorescence     Spectroelectrochemistry     Derivative cyclic volta fluorescence    

标题 作者 时间 类型 操作

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

期刊论文

Simultaneous enhanced ammonia and nitrate removal from secondary effluent in constructed wetlands using a new manganese-containing

期刊论文

Photoreduction adjusted surface oxygen vacancy of BiMoO for boosting photocatalytic redox performance

期刊论文

Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids

Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG,Jun MA

期刊论文

Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide

期刊论文

High butanol production by regulating carbon, redox and energy in Clostridia? ?

Jianfa Ou,Chao Ma,Ningning Xu,Yinming Du,Xiaoguang (Margaret) Liu

期刊论文

Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines

Rekha M., H. Kathyayini, N. Nagaraju

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox

期刊论文

Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent

Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu

期刊论文

The role of manganese oxides in the activation of peroxymonosulfate (PMS)

Jianzhi Huang, Huichun Zhang

期刊论文

Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction

Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan

期刊论文

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

期刊论文

Occurance and control of manganese in a large scale water treatment plant

Youjun CHEN,Feng XIAO,Yongkang LIU,Dongsheng WANG,Ming YANG,Hua BAI,Jiong ZHANG

期刊论文

Visible light induces bacteria to produce superoxide for manganese oxidation

期刊论文

Probing the redox process of

Rui Lu, Wei Chen, Wen-Wei Li, Guo-Ping Sheng, Lian-Jun Wang, Han-Qing Yu

期刊论文